3.44 \(\int \frac {\sqrt {a x+b x^3}}{x^3} \, dx\)

Optimal. Leaf size=116 \[ \frac {2 b^{3/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{a} \sqrt {a x+b x^3}}-\frac {2 \sqrt {a x+b x^3}}{3 x^2} \]

[Out]

-2/3*(b*x^3+a*x)^(1/2)/x^2+2/3*b^(3/4)*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x
^(1/2)/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b
*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(1/4)/(b*x^3+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {2020, 2011, 329, 220} \[ \frac {2 b^{3/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{a} \sqrt {a x+b x^3}}-\frac {2 \sqrt {a x+b x^3}}{3 x^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x + b*x^3]/x^3,x]

[Out]

(-2*Sqrt[a*x + b*x^3])/(3*x^2) + (2*b^(3/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*
x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(3*a^(1/4)*Sqrt[a*x + b*x^3])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2011

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 2020

Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a*x^j + b*
x^n)^p)/(c*(m + j*p + 1)), x] - Dist[(b*p*(n - j))/(c^n*(m + j*p + 1)), Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p -
 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[p
, 0] && LtQ[m + j*p + 1, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a x+b x^3}}{x^3} \, dx &=-\frac {2 \sqrt {a x+b x^3}}{3 x^2}+\frac {1}{3} (2 b) \int \frac {1}{\sqrt {a x+b x^3}} \, dx\\ &=-\frac {2 \sqrt {a x+b x^3}}{3 x^2}+\frac {\left (2 b \sqrt {x} \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {a+b x^2}} \, dx}{3 \sqrt {a x+b x^3}}\\ &=-\frac {2 \sqrt {a x+b x^3}}{3 x^2}+\frac {\left (4 b \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{3 \sqrt {a x+b x^3}}\\ &=-\frac {2 \sqrt {a x+b x^3}}{3 x^2}+\frac {2 b^{3/4} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{3 \sqrt [4]{a} \sqrt {a x+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 53, normalized size = 0.46 \[ -\frac {2 \sqrt {x \left (a+b x^2\right )} \, _2F_1\left (-\frac {3}{4},-\frac {1}{2};\frac {1}{4};-\frac {b x^2}{a}\right )}{3 x^2 \sqrt {\frac {b x^2}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x + b*x^3]/x^3,x]

[Out]

(-2*Sqrt[x*(a + b*x^2)]*Hypergeometric2F1[-3/4, -1/2, 1/4, -((b*x^2)/a)])/(3*x^2*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

fricas [F]  time = 0.71, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{3} + a x}}{x^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(1/2)/x^3,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a*x)/x^3, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b x^{3} + a x}}{x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(1/2)/x^3,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^3 + a*x)/x^3, x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 123, normalized size = 1.06 \[ \frac {2 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{3 \sqrt {b \,x^{3}+a x}}-\frac {2 \sqrt {b \,x^{3}+a x}}{3 x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a*x)^(1/2)/x^3,x)

[Out]

-2/3*(b*x^3+a*x)^(1/2)/x^2+2/3*(-a*b)^(1/2)*((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(
-a*b)^(1/2)*b)^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)/(b*x^3+a*x)^(1/2)*EllipticF(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*
b)^(1/2),1/2*2^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {b x^{3} + a x}}{x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a*x)^(1/2)/x^3,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^3 + a*x)/x^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {b\,x^3+a\,x}}{x^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x + b*x^3)^(1/2)/x^3,x)

[Out]

int((a*x + b*x^3)^(1/2)/x^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {x \left (a + b x^{2}\right )}}{x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a*x)**(1/2)/x**3,x)

[Out]

Integral(sqrt(x*(a + b*x**2))/x**3, x)

________________________________________________________________________________________